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Velocity fluctuations and dispersion in a simple porous medium
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We model a fluid-filled disordered porous medium by a lattice-Boltzmann system with randomly broken
links. The broken links exert a friction on the fluid without excluding volume. Such a model closely mimics the
idealized picture of a porous medium, which is often used in the theoretical analysis of hydrodynamic disper-
sion. We find that the Brinkman equation describes both the mean flow characteristics and the spatial decay of
velocity fluctuations in the system. However, the temporal decay of the velocity correlations~that a particle
experiences as it moves with the fluid!, cannot be simply related to the spatial decay. It is this temporal decay
that determines the dispersivity. Thus, hydrodynamic dispersion is generally greater than theories based on
spatial correlations would imply. This is particularly true at high densities, where such theories considerably
underestimate both the magnitude and transient time scale for dispersion. Nonetheless, temporal velocity
correlations are still ultimately screened and the hydrodynamic dispersion coefficient converges exponentially.
The long-lived transients reported for more realistic systems must therefore be due explicitly to the presence of
excluded volume.
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I. INTRODUCTION

When a tracer particle is introduced into a stationary flu
it will be dispersed by Brownian motion. The dispersion c
be characterized by the mean of the squared displaceme
a given direction,Dx2. From the Einstein definition of the
self-diffusion coefficientD0, this increases linearly with
time, the constant of proportionality being twiceD0,

^Dx2~ t !&52D0t. ~1!

For a stationary fluid filling the voids in a~nonadsorbing!
porous medium, the motion of the tracer particles is hinde
by the medium and the diffusion coefficient of the trac
particles is reduced relative toD0. If, on the other hand, the
fluid flows through the porous medium with a mean veloc
V̄, then the dispersion of tracer particles~now defined by the
variance in their displacements! increases and can becom
very large compared to 2D0t. The origin of this ‘‘hydrody-
namic’’ dispersion lies in the fact that, even in the absence
Brownian motion, different particles experience different
cal flow velocities and are, therefore, transported by conv
tion over different distances in a given timet. Quantitatively,
the dispersion coefficient is related to the time integral of
time correlation function of the velocity fluctuations expe
enced by tracer particles:

D5E
0

`

^@v i~0!2V̄#@v i~ t !2V̄#&dt, ~2!

wherev i(t) is the instantaneous velocity of a particle alo
the flow direction as it moves through the fluid. Note that
follow convention here and refer to thediffusioncoefficient
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for the equilibrium case~where there is no flow!, and to the
dispersioncoefficient for the nonequilibrium case~where the
fluid flows!. The relative importance of this convective di
persion, relative to simple diffusion, can be characterized
the Peclet number Pe. It is defined as Pe5U* l * /D0, where
U* is a characteristic velocity andl * is a characteristic
length. The obvious choice for the characteristic velocityU*
is the mean velocity of the fluidV̄. At high Peclet numbers
tracer transport over distances larger thanl * is dominated by
convection, and dispersion is therefore dominated by the s
tial fluctuations in fluid velocity. Conversely, at low Pecl
numbers, the convective contribution is small and simple d
fusion dominates

In order to understand hydrodynamic dispersion, we n
an idea of how fluid flows in porous media. If the fluid
Newtonian, then the steady-state velocity fieldsv will be
solutions of the time-independent Navier-Stokes equation

2“P1h¹2v1F50,

“•v50 ~3!

that satisfy stick boundary conditions at the solid/fluid inte
face. HereP is pressure,F is any external forces acting o
the fluid, andh is the viscosity. We have also assumed th
inertia is negligible~the flow is at low Reynolds number!.
The relation between the steady-state flow velocity and
applied pressure gradient is then given by the empirical D
cy’s law,

V̄52
k

h
“P, ~4!

wherek is a constant~the permeability! that depends only on
the properties of the porous medium, not on those of
fluid. Equation 4 is a first-order equation while Eqs.~3! are
second-order equations. It is therefore impossible to form
©2003 The American Physical Society06-1
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late rational boundary conditions between the two. In 19
Brinkman proposed an equation to describe the locally a
aged flow in a porous media@1#. The Brinkman equation
considers the balance of forces acting on a volume elem
of fluid, i.e., the pressure gradient, the divergence of
viscous stress tensor, and the friction force exerted by
porous medium:

h¹2v2“P2
h

k
v50. ~5!

The crucial assumption is that the external force in
Navier-Stokes equation@Eq. ~3!# can be replaced by the forc
term in Darcy’s law@Eq. ~4!#. This substitution is only justi-
fied if the porous medium occupies a vanishingly small fr
tion of space. In that case one may consider the porous
dium as a continuum that exerts a friction on the fluid
every point. In spite of the approximate nature of the Brin
man equation, it has proved to be an extremely useful
for modeling flow in spatially inhomogeneous porous me
@2,3#.

Of most relevance to us here is the use of the Brinkm
equation to describe not average flow velocities, but the s
tial decay of fluctuations in the flow velocity. It is clear from
Eq. ~2! that it is these fluctuations that play the crucial role
determining the dispersion coefficient. Indeed, if Browni
motion can be neglected, the particle velocityv i(t) appear-
ing in Eq. ~2! is simply the instantaneous velocity of a pa
ticle as it convects along a streamline. This we refer to as
Lagrangian velocity correlation functionCv(t). This concept
was utilized by Koch and Brady in their theoretical analy
of dispersion in random media composed of randomly d
tributed fixed particles. Notably, they made use of the f
that a velocity fluctuation generated by one of the fix
points making up the porous medium will, according to t
Brinkman theory, decay in space on a length scale set by
Brinkman lengthl. The Brinkman length is the square ro
of the permeability. If the particles making up the mediu
have no spatial extension~they are simply points in the fluid
exerting friction!, the decay is exponential. If they do have
spatial extension, in the sense that stick boundary condit
apply on the surface, the decay is slower, going with dista
r as 1/r 3 @4#. On the other hand, if the presence of the poro
medium is neglected, the Brinkman equation reduces to
usual Navier-Stokes equation for which a velocity pertur
tion decays as 1/r . This leads to an unbounded integral f
the dispersion coefficient, implying that the dispersion co
ficient diverges, that is, it would always depend on the s
tem size. The hydrodynamic screening predicted by
Brinkman equation thus plays a crucial role in determin
the dispersion coefficient. A similar effect occurs in sedime
tation, where velocity fluctuations in an unbounded syst
diverge@5#. In this case, it is the presence of container wa
that is crucial in providing the necessary screening@6#.

The question we want to address here is how well t
picture, central to the theory of Koch and Brady, describ
hydrodynamic dispersion. One reason for doing so is t
numerical simulations of dispersion in packed beds
spheres, reported in Ref.@7#, suggested that the dispersio
05630
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coefficient was still increasing on time scales where
theory suggested it should have already converged. T
raised the question: Is this the asymptotic behavior? For
alistic packed beds of spheres Kochet al. @8# showed that the
screening picture describes the decay of the velocity fluc
tions reasonably well. Dorlosfky and Brady@9# arrived at the
same conclusion. There are nonetheless two complicat
with ‘‘realistic’’ systems. First, as noted above, the Brinkm
screening is less dramatic~going from a 1/r decay to 1/r 3)
for spatially extended particles than is the case for po
~from 1/r , to exponential!. Second, the presence of an e
plicit solid/fluid interface, where the flow velocity goes t
zero, means that there is a region close to the surface tha
tracer particles must always enter and leave by diffusi
Koch and Brady suggest that the presence of this diffus
boundary layer means that the dispersion coefficient reac
its asymptotic value on time scales much longer than wo
otherwise be expected. This could also be responsible for
behavior observed in Ref.@7#. In this paper we, therefore
consider a simple model system where both these comp
tions are absent; that is, following in the spirit of the theo
we consider a porous medium composed of fixed points
exert friction but have no spatial extension. Indeed,
analysis of such a system gives one contribution to the o
all dispersion coefficient in the expression derived for
packed bed@10#. It is regarded as the contribution to th
dispersion coefficient due to the velocity perturbation at d
tances far from the fixed particle. Specifically, this pure
convective term,Dc , makes a contribution to the total dis
persion coefficient

Dc5
V̄

8prl2
, ~6!

wherer is the number density of the fixed points. For th
work we describe here, we will ignore Brownian motion a
concentrate solely on the decay of velocity fluctuations d
to convection. In that case, we haveD5Dc . While the
model may seem of somewhat academic interest, there
important examples of hydrodynamic dispersion in dilu
systems for which the model could be reasonably appl
Dispersion in flow through polymer networks would be
example.

II. DESCRIPTION OF THE MODEL

To simulate fluid flow in our model porous media, w
employed the lattice-Boltzmann~LB! method. This method
describes the fluid in terms of the density of particles with
discrete set of velocities, constraining their locations to
discrete set of positionsr at integer times. These position
thus correspond to points on a lattice when time is d
cretized. The choice of the lattice is restricted by the fact t
only a few lattices have a high enough local symmetry
model hydrodynamic flow with an isotropic viscosity. Th
choice of the lattice defines the velocities$ci% that are al-
lowed. In our simulations we have used the ‘‘D3Q18’’ mod
@11#, where D3 indicates that the lattice is three dimensio
and the number after the ‘‘Q’’ indicates the number of velo
6-2
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VELOCITY FLUCTUATIONS AND DISPERSION IN A . . . PHYSICAL REVIEW E67, 056306 ~2003!
ity allowed per site~in our case 18! @12#. For more details on
possible lattices see, for example, Ref.@12#. The quantity we
calculate in the LB method is the discretized one-parti
velocity distribution functionni(r ,t). This is the probability
a particle at lattice siter at time t has a velocityci . The
hydrodynamic fields, the densityr(r ), and momentum den
sity j (r ), for example, are moments of this distribution fun
tion,

r~r ,t !5(
i

ni~r ,t !; ~7!

j ~r ,t !5(
i

cini~r ,t !, ~8!

where i sums over all possible velocitiesci . The time evo-
lution of the distribution function is described by the di
cretized analog of the Boltzmann equation@11#.

ni~r1ci ,t11!5ni~r ,t !1D i~r ,t !. ~9!

Here,D i is the change inni due to ‘‘collisions’’ at the lattice
sites. The postcollision distributionni1D i is propagated in
the direction of the velocity vectorci . A complete descrip-
tion of the collision process is given in Ref.@11#. The main
effect of the collision operatorD i(r ,t) is to ~partially! relax
the shear stress at every lattice site while conserving the l
particle number and momentum. The rate of stress relaxa
is related to the kinematic viscosityn. A full description of
the collision operator is given by Ladd@11#. Further, we
make use of the simplest collision operator where the n
equilibrium components of the stress tensor relax in one t
step and the Reynolds number is rigorously zero~the con-
vective term in the equilibrium stress tensor is neglecte!.
The overall procedure involves two steps: a propagation
and a collision step. In the propagation step each distribu
function is moved to the neighboring site by velocityci . In
the collision step the distributions at each site ‘‘collide,’’
the sense that they are modified by the collision operato
can be shown that the evolution of the hydrodynamic fie
in the model is described by the Navier-Stokes equati
@11#.

Having described how we can simulate the fluid, we n
need a method to model the porous medium. Within
lattice-Boltzmann framework there is a straightforward p
cedure for imposing stick boundary conditions at an expl
solid/fluid interface. A simple bounce-back rule perform
on boundary links enforces the stick boundary condition
second order, while not perturbing the stress@11#. Boundary
links are defined as links connecting lattice sites inside
outside the solid object, and obviously these come in pa
Adopting a convention of labeling the link that goes fro
inside to outside asib and its partner2 ib,

n2 ib~rb ,t1D!5nib~r ,t !,

nib~rb1cib ,t1D!5n2 ib~rb1cib ,t !, ~10!

Here we do not want an explicit solid-fluid interface, in th
sense of a solid phase that excludes volume from the fl
05630
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Instead, with a given probability, we break links@that is,
define a set of links for which the propagation equation
modified according to Eq.~10!#. These broken links exclude
no volume~so long as the fraction of broken links stays we
below the percolation threshold! but will exert a friction on
the fluid proportional to the local flow velocity. They ar
effectively point scatterers.

III. RESULTS

To generate our model porous medium we generated a
of point sources for friction according to a binomial distr
bution. We first fixed the probabilityF that a link would be
broken. This number was varied between 0.01 and 0.3.
every link, we then generated a random number betwee
and 1. If this random number was less thanF, the link was
broken, otherwise it was left intact. In this way, we genera
one particular realization of the porous medium for a giv
value of F. All our results were obtained by performin
simulations for at least 25 different configurations for eve
value ofF. Note that, for every configuration, the fraction o
broken links is not exactly equal toF. Only the average
value is imposed. We cannot predicta priori how the Brink-
man length depends on the fractionF of broken links, be-
cause this, even for point scatters, involves the many-par
hydrodynamic interactions. We therefore determinel nu-
merically. This can be done in two ways. One is to meas
the average flow velocity in the presence of an applied
ternal force and calculate the permeability. The second i
compute the flow profile in a simple confined geometry. F
instance, the Brinkman equation~5! can easily be solved fo
a three-dimensional porous medium confined in a
bounded by two hard walls. On the walls, stick bounda
conditions apply. If we apply a body force parallel to th
plates, the solution for the steady velocity profile is given

vx~z!5
l2F

h F 12

coshS z

l D
coshS L

2l D G , ~11!

where the two plates are located atz52L/2 andz51L/2, x
is the direction of the force andF is a force per unit of
volume. Note that the Brinkman lengthl enters this equation
twice: first through the~Darcy! prefactor, and second throug
the ‘‘screening’’ length that determines the shape of the fl
profile. The constraint that a single value ofl should fit both
the shape and the prefactor provides a good consiste
check on our determination ofl.

The simulation box had a length of 320 lattice spacings
the direction of the flow, and 40 lattice spacings in the oth
two directions. Periodic boundary conditions were used
the unbounded directions. Even for the lowest density sys
(F50.01), the Brinkman length was found to be no larg
than 3.41 lattice units. This is more than an order of mag
tude less than the smallest system dimension. At larger
ues ofF, the Brinkman length is even smaller. Hence, w
expect finite-size effects to be negligible at all values ofF
that we studied. To study the flow, we let the system evo
6-3
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under the applied body force,F. After some transient time
the flow fields reach a steady state. All correlation functio
that we report have been computed for this steady state
compute the average flow profile, we averaged the stea
state flow profiles of all 25 different configurations. It is
this averaged flow profile that we fitted the Brinkman flo
profile given by equation~11!. A result of this fitting proce-
dure is shown in Fig. 1. It is worth remembering that t
Brinkman length is the only parameter in this fit. The figu
shows that the computed flow profile fits the Brinkman e
pression. This result is nota priori obvious and provides a
useful check that we do indeed have a system with a w
defined Brinkman length whose spatially averaged beha
is a solution to the Brinkman equation. By repeating t
fitting procedure for other values ofF, we obtained the de
pendence ofl on F. We found that the low density resu
l}1/AF holds to a good approximation over the who
range ofF we consider here.

As Fig. 1 shows, the Brinkman length describes the d
tance over which a flow profile in a porous medium is p
turbed by an ‘‘obstacle’’~in this case the hard wall!. In the
spirit ~if not the letter! of Onsager’s regression hypothes
we might expect that ‘‘spontaneous’’ spatial velocity fluctu
tions should decay on the same length scale. To verify t
we computed the spatial velocity correlation functi
~SVCF! defined as

Cs~r !5^@v~0!2V̄#@v~r !2V̄#&, ~12!

wherev(r ) is the component of fluid velocity along the flo
direction at a distancer. To compute the SVCF~and all re-
maining correlation functions!, we considered a purely per
odic system without walls. In such a system, the aver
flow velocity is the same everywhere. In any specific reali
tion of the disorder, however, there will be local deviatio

FIG. 1. Velocity profile for a fluid flowing through the mode
porous medium confined between two plates. The flow velocitv
normalized by the maximum flow velocityv0 is plotted as a func-
tion of dimensionless distance from the center. The dashed lin
the solution of the Brinkman equation; the circles are the numer
data.
05630
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from the average value. The SVCF shows how the
disorder-induced fluctuations decay, spatially, to zero.

In Fig. 2 ~open symbols! we showCs(r )/Cs(0) computed
for a range of values ofF. In this figure, we have expresse
all distances in units of the Brinkman lengthl. If, as we
assume, the Brinkman length is the only relevant length sc
in the system, then all the functions should superimpo
This is precisely what we observe. Moreover, the SVCF
cays exponentially, with a characteristic decay distance o
Brinkman length. It seems, therefore, that the average fl
profiles and the averaged spatial decay of perturbations in
flow profile satisfy Brinkman scaling. It would seem logic
to assume that, as the spatial decay of velocity fluctuati
satisfies Brinkman scaling, so should the temporal deca
this were true, then Brinkman scaling should apply to disp
sion of tracer particles. In fact, it has been argued that
nature of the equations, in particular, that the Brinkm
equation has no explicit time dependence, has as a co
quence that the Lagrangian velocity correlation functi
~LVCF! should decay in the same way as the SVCF, i
exponentially, with a characteristic time equal tol/V̄ @10#.
The LVCF is, within this approximation, simply

Cv~ t !'^@v~0!2V̄#@v~r5V̄t !2V̄#&5Ce~r 5V̄t !.
~13!

We call this approximation to the LVCF the Eulerian tim
velocity correlation function~EVCF!, Ce(V̄t). In Fig. 2
~filled symbols! we show the normalized EVCF compute
for a range of values ofF, together with the SVCF. We
observe that all EVCF’s superimpose. The typical length
decay is a little bit larger than that for the SVCF, because
are now considering correlations along the flow directi
only. Otherwise, there is little difference. Based on this a
proximation, one would expect that the natural unit of tim

is
al

FIG. 2. The normalized spatial velocity correlation functio
@Cs(r )/C(0), open symbols# and Eulerian velocity correlation
function @Ce(r )/C(0), filled symbols#, as a function of dimension-
less distancer /l. The broken link fractions areF50.01 ~plus!,
0.08~circles!, 0.1~squares!, 0.2~diamonds!, and 0.3~triangles!. The
error bars are smaller than symbols. The dashed line is the resu
fitting an exponential toCs(r )/C(0) for r /l.0.5
6-4
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VELOCITY FLUCTUATIONS AND DISPERSION IN A . . . PHYSICAL REVIEW E67, 056306 ~2003!
for the Lagrangian velocity correlation functions is th
Brinkman time defined ast5l/V̄, i.e., the average time i
takes a tracer particle to travel over a distance equal to
Brinkman length. In order to calculate the Lagrangian vel
ity correlation function, we need to follow the trajecto
along which a particle travels; that is, we have to calcul
velocity correlations for a streamline. In the appendixes
describe our procedure for doing so. Figure 3 shows
LVCF for a system withF50.3. In the same figure, we
show the theoretical prediction for the shape of the LV
corresponding to the EVCF and assuming that the velo
time correlation function can be obtained directly by repla
ing the displacement in the latter bytV̄. The figure shows
clearly that there exists no such simple relation between
spatial and temporal decays of velocity fluctuations. In
first place, there is a marked difference in the behavio
short times. The initial rate of decay of the Lagrangian fun
tion is zero, so it cannot be approximated by an exponen
It is straightforward to show, from the incompressibility co
dition, that this must be the case~see Appendix A!. More
importantly, if we plot the LVCF for different values ofF
~i.e., different Brinkman lengths!, we cannot make the differ
ent LVCF’s collapse onto the same master curve~see Fig. 4!.
This is surprising, because it suggests that the Brinkman t
is not the only relevant time scale in the system. In fa
Koch and coworkers@10,8# have suggested that anomalo
~non-Brinkman! decay of velocity time correlation function
should be intimately linked to similar anomalies in th
SVCF. Yet, our simulations appear to show ‘‘normal’’ beha
ior in the EVCF and ‘‘anomalous’’ behavior in the LVCF. A
the LVCF decays much more slowly than one would exp
on basis of the Brinkman-scaling assumption, the dispers
coefficient@calculated from Eq.~2!# is larger than would be
predicted by simple use of the Brinkman equation. The s
decay of the LVCF indicates that the velocity of tracer p
ticles remains strongly correlated in the time that it takes
average fluid to move over one Brinkman length. Hence,

FIG. 3. Comparison of the scaled, normalized, Eulerian~tri-
angles!, and Lagrangian~diamonds! velocity correlation functions.
j is a dimensionless unit equal tor /l for Ce(r ) and to t/t for
Cv(t). Time t is the average time to convect a Brinkman leng

(t5l/V̄). The dotted lines are guides to the eye.
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hydrodynamic screening picture that works so well for av
age flow profiles, seems to be quantitatively~though not
qualitatively! incorrect when we consider temporal correl
tions.

In what follows, we shall consider hydrodynamic dispe
sion in the limit of high Peclet number. In this limit, and i
the absence of any explicit solid/fluid interface, the Brow
ian motion of the tracer particles can be ignored. It th
follows from Eq.~2!, that the dispersion coefficient is relate
to the time integral of the Lagrangian velocity correlatio
function. We now compare the computed dispersion coe
cients with values predicted by the theory of Koch a
Brady. Before proceeding, we need to briefly recapitul
their model. They model the porous medium by a continu
of points, every point exerting a friction on the fluid. Th
might seem an abstract concept of porous media, but it
resents a simplified model of a dilute packed bed of sphe
in the limit of many scatterers per Brinkman length cube
Using such a model, they were able to compute the fl
velocity perturbation at large distances generated by parti
making up the porous medium. From this they derive
expression for the dispersion coefficient. In order to perfo
the calculation they approximate the LVCF with the EVC
The resulting expression for the dispersion coefficient at h
Peclet number is

Dth

D0
5

3

4
Pe, ~14!

where the Peclet number is Pe5U* l * /D0 ; U* being natu-
rally identified with the mean velocity of fluidV̄ and D0
being the diffusion coefficient@here superfluous because
cancels theD0 on the left hand side of Eq.~14!#. Some
discussion is needed about the choice ofl * . In general,l * is
a typical length of the system. The theory takes as a cha

FIG. 4. The normalized Lagrangian velocity correlation functi
as a function of dimensionless time. The different curves co
spond to different broken link fractions. The corresponding dim
sionless densities are 2.4~circles!, 1.7 ~squares!, and 0.27~tri-
angles!. Note that the curves do not superimpose but decay m
slowly with decreasing dimensionless density~increasing absolute
density!.
6-5
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CAPUANI, FRENKEL, AND LOWE PHYSICAL REVIEW E67, 056306 ~2003!
teristic length the ‘‘effective’’ radius of spherical particle
which leads to a low density random medium with the sa
Brinkman length. This gives the expressionDth5 3

4 V̄a. In
actual, radiusa is a somewhat fictitious parameter obtain
by implying a dilute bed of spheres to model the poro
medium. The following procedure is needed to obtaina as
function of the Brinkman lengthl. A dilute bed of spheres
with number density of scatterersr, exerts a total drag equa
to r times the Stokes drag of a single sphere. Darcy’s
gives a value for the same drag in terms of the Brinkm
length @Eq. ~4!#. Equating the two, one gets

l5A 1

6pra
. ~15!

Using Eq.~15! the dispersion coefficient becomes

Dth5
^u&

8prl2
. ~16!

We need, at this point, an expression forr in terms of the
broken links model. We should point out that, at this level
detail, it is difficult to map our model directly to the theor
because we have, in effect, points with a directionally dep
dent friction. The theory, on the other hand, considers po
that exert an isotropic friction. To match~approximately! the
two, we proceed as follows. In the D3Q18 lattice there are
links, six of which have weight 2@11#; in our case only two
such links are oriented along the flow direction. There
also eight singly occupied links with a component in the flo
direction, oriented at 45° to the flow. We therefore take th
to contribute 1/2. The remaining links are oriented perp
dicular to the flow direction, so these contribute nothin
Allowing for the fact that each link belongs to two lattic
sites, the effective density of links, in lattice units, we the
fore take to ber54F. From the simulation data the dispe
sion coefficient can be computed from the Lagrangian ve
ity correlation function,

D5E
0

`

Cv~ t !dt5C~0!E
0

`

Cv~ t !/C~0!dt. ~17!

The initial value of the function,C(0), is simply the cova-
riance of the velocity field. This is, in fact, true for all th
correlation functions we have defined. Equation~17! defines
D. If, instead, we approximate LVCF with EVCF, we ca
define

DEul5C~0!E
0

`

Ce~ t !/C~0!dt5C~0!t8. ~18!

As we have already shown that theCe(t)/C(0) scales onto a
single curvet8 defined by Eq.~18! and representing a cha
acteristic time, is the same for all values of the Brinkm
length. The two integrals will, in general, be different, in th
while Cv(t) is related to the velocity of the particle at timet,
Ce(t) refers to the velocity of a particle at a positionr
5V̄t. The two quantities are only necessarily equal in
absence of velocity fluctuations.
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In units where length, time, and velocity are, respective
l, t, andV̄, the dispersion coefficients are thus

Dth* 5
1

8prl3
,

DEul* 5
C~0!

V̄2

t8

t
,

D* 5
1

V̄2E0

`

Cv~ t !dt. ~19!

In the following we will plot the dispersion coefficients as
function of the dimensionless friction point densityr*
5rl3. This is the number of scatterers per cubic Brinkm
length and sets the intrinsic scale of the system. The sca
of the Brinkman length@l;r21/2, see Eq.~15!# means that
dense porous media in ‘‘real word’’ units are actually dilu
in the intrinsic scale set by the Brinkman length. In fa
when r→`, r* →0; that is, high dimensionless numbe
densities correspond to the approximations made in
theory, because in the~spatially! dilute limit there are many
scatterers per Brinkman length cubed. This assumption
needed to treat the porous medium as a continuum. We
thus able to disentangle the effect of the dilute limit appro
mation and use the EVCF instead of the LVCF to comp
the dispersion coefficient.

In Fig. 5 we plotDth* and DEul* as functions of 1/r* for
high values ofr* . The theoretical value of the dispersio
coefficientDth* is a linear function of 1/r* @Eqs. ~19!#. We
observe that in the dilute limitDEul* also has a linear behav
ior. A linear fit of DEul* for high r* has an intercept at zero
as the theory predicts. In the figure we plotted alsoD* ,

FIG. 5. The dimensionless dispersion coefficientD* as a func-
tion of inverse dimensionless densityr* . Also plotted are the the-
oretical values of the dimensionless dispersion coefficientDth*
~circles! and the dispersion coefficient obtained by approximat
the Lagrangian velocity correlation function with the scaled Eu
rian function,DEul* ~plus!. Note that the high values ofr* corre-
spond to the low point densities so this data covers the spat
dilute regime.
6-6
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which has the same behavior. At a given number density
difference betweenDth* andDEul* measures the effect of th
dilute limit approximation, whereas the difference betwe
DEul* andD* measures the error made by approximating
LVCF with the EVCF. The difference betweenDth* andD* is
a measure of the accumulated effect of the two approxi
tions. We can conclude that the theoretical expression wo
very well in the dilute limit. In this regime the absolut
agreement between the theory and simulations, given the
proximate nature of the mapping, is clearly very good. T
confirms the prediction of Koch and Brady theory that t
dispersivity is independent of volume fraction for dilu
beds.

In Fig. 6 we show the whole range of densities covered
our simulations, and we repeat the analysis carried out
Fig. 5. Again on the abscissa is the inverse dimension
density 1/r* . For decreasing values of the dimensionle
density the two lines diverge. The difference between
two represents the factor needed to correct for the dilute l
assumption. We observe that the computed dispersion c
ficients no longer have a linear dependence on 1/r* . We also
see that there is an appreciable difference between the e
dispersion coefficientD* and both the approximationsDEul*
andDth* . This difference increases with decreasingr* . This
means that, for what would correspond to anincreasingly
packed bed, the dispersion coefficient becomes much la
than the theory predicts. Both the dilute limit assumption a
approximating the Lagrangian velocity correlation functi
with the Eulerian contribute to the error. At low and mode
ate densities it is the former, rather than the latter, that lim
the validity of the theory.

IV. CONCLUSIONS

In this paper we described numerical simulations of fl
through a simple model porous medium. The porous med

FIG. 6. The dimensionless dispersion coefficientD* as a func-
tion of the inverse dimensionless densityr* . Also plotted are the
theoretical values of the dimensionless dispersion coefficientDth*
~circles! and the dispersion coefficient obtained by approximat
the Lagrangian velocity correlation function with the scaled Eu
rian functionDEul* ~plus!. Note that the low values ofr* correspond
to the high point densities so this data extends to the spatially d
regime.
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was modeled by simply breaking randomly, with probabil
F, the links used in the lattice-Boltzmann equation. Fro
the point of view of comparing with theory, this broken lin
model has two advantages. First, it has no excluded volu
Second, it exerts a relatively high local friction. The latt
allows one to calculate correlation functions over seve
Brinkman lengths. We showed, by two different calculation
that this model does indeed behave as the Brinkman equa
predicts. Specifically, for the velocity profile of a flow
through a porous medium sandwiched between two pla
and the spatial decay of fluctuations in the local flow veloc
about the mean~SVCF!. The latter is an assumption in th
Koch and Brady theory of dispersion in random media an
is a good one. We found that there is a universal behavio
spatial correlations if we measure lengths in units of
Brinkman length, confirming that this is the only releva
length in the system. We also confirmed that, spatially, t
results in an exponential screening of the fluctuations. Ag
this is central to the Koch and Brady theory. It guarante
convergence of the dispersion coefficient, which would o
erwise diverge. We can conclude that the broken link mo
is well described by the Brinkman equation. Conversely,
Brinkman equation describes successfully the spatial de
of velocity fluctuations in our model porous medium.

From the point of view of hydrodynamic dispersion, it
the temporal, rather than spatial decay, of fluctuations tha
relevant. For the Lagrangian velocity correlation functi
~the temporal decay of the velocity a particle experiences
it traverses the fluid! things were more complex. This ‘‘time’
velocity correlation function behaved quite differently. I
decay is not a simple exponential and, if we attempt to re
time to an average displacement, there is no universal be
ior in the scaled decay. The decay of this function cannot
predicted by a simple mapping to the Brinkman equat
alone. It is not possible to say that Lagrangian fluctuatio
are uniquely related to the Eulerian fluctuations for all de
sities of scatterers. This is an approximation invoked in
Koch and Brady theory and one, the simulations show, tha
only strictly justified for low densities~Koch and Brady
themselves acknowledge that it is a low density approxim
tion!. We should stress, however, that the decay of the
grangian correlation function with time is still asymptotical
exponential. Thus, the qualitative picture that the screen
of the velocity fluctuations by the porous medium itself lea
to a convergent dispersion coefficient remains true. The
sults reported in Ref.@7# cannot be attributed to a breakdow
of the screening picture, the slow decay must in some way
related to the more complex nature of the porous mediu
notably, the presence of excluded volume and diffus
boundary layers. Nonetheless, the conclusion that Lagra
ian correlations can decay on much longer temporal~and, by
implication, spatial! scales is consistent with Ref.@7#. Here,
the correlation functions were decaying on time scales
greatly exceeded the Brinkman time.

Given the simplicity of our model and its similarity to th
system Koch and Brady used to develop part of their the
of dispersion in packed beds, a direct comparison see
appropriate. We thus computed the dispersion coefficient~in
the limit where molecular diffusion can be neglected! as a
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CAPUANI, FRENKEL, AND LOWE PHYSICAL REVIEW E67, 056306 ~2003!
function of broken link density. In the limit where the theo
should be most valid~low volume fraction, a broken link
‘‘volume’’ interpreted as the volume of a sphere that exe
the same friction!, we found reasonable agreement. At high
volume fractions, the agreement breaks down and the th
grossly underestimates the dispersion coefficient. In this
gime, the decay of the Lagrangian velocity correlation fun
tions differs dramatically from the scaled spatial decay u
to approximate it in the theory. The fact that the theory giv
dispersivities that actually agree quite well with experimen
results for dense packed beds must be due to the fact th
more accurately accounts for the boundary layer disper
that we do not consider here.
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APPENDIX A: INITIAL RATE OF DECAY OF THE LVCF

In this section we give a simple argument as to why
initial gradient of the Lagrangian velocity correlation fun
tion, computed along the direction of the flow, should
zero. We define thex direction as the tangent to the trajecto
x̂[ t̂. The ŷ andẑ directions would be any pair of orthogon
vectors in the plane orthogonal to the trajectory. The LVCF
defined asCx(t)5^ux(0)ux(t)& and its time derivative is

]Cx~ t !

]t
5K ux~0!

]ux~ t !

]t U
t50

L .

On the other hand, the time derivative of the fluid veloc
experienced by a tracer particle can be written as

]ux~ t !

]t U
t50

5
]x~ t !

]t U
t50

]ux~ t !

]x U
t50

5ux~0!
]ux~ t !

]x U
t50

.

r

-
e
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We can now use the incompressibility condition“•u50,
this can also be written as

]ux

]x
1F]ux

]y
1

]ux

]z G50.

The term within the square brackets is zero by definit
because of the choice of the axes. As a conseque
]ux /]x50, so it follows that]Cx(t)/]t50. Thus the initial
slope of the LVCF along a streamline is zero. It follows th
along the direction of the mean fluid flow the slope is a
zero, because the average of the vector tangent to a traje
is parallel to the vector defining the direction of the flow.

APPENDIX B: COMPUTING STREAMLINES

A streamline is the trajectory followed by a tracer partic
when the system is stationary and the particles have no
fusion. In this section we describe how we computed
stream lines. The problem that has to be solved is sim
given a fieldV(xi) on a latticexi , construct a flux linex(t),
wherex is a continuous variable. A straightforward proc
dure to perform this calculation is the Euler method:x(t
11)5x(t)1dtV„x(t)…. This method is only accurate to firs
order. We employed the Runge-Kutta method in the midpo
approximation@13#, which is accurate to second order in th
time step. Higher-order methods were not necessary.
value ofV„x(t)… has to be interpolated. In order to compu
the off-lattice values of the velocity field, we used a ve
simple trilinear interpolation, which is the three-dimension
generalization of the linear interpolationV(xi1dx)5V(xi)
1dx@V(xi 11)2V(xi)#.

Although very simple, the approach described abo
proved to be very robust. We checked that the time s
chosen was small enough to ensure a consistent stream
calculation up to the distance used in our simulations. A
possible improvement in the streamline calculation result
a small enhancement of the effect we have pointed out in
paper.
tt.
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